Welcome to International Network for Natural Sciences

Paper Details

Research Paper | March 5, 2022

| Download

Green synthesis of silver nanoparticles (AgNPs): Agricultural applications and future vision

Shakil Ahmed Polash, Nilofar Yakub Nadaf, Md. Atikur Rahman, Abdullah Mohammad Shohael

Key Words:

J. Bio. Env. Sci.13(2), 35-57, August 2018

DOI: http://dx.doi.org/10.12692/ijb/20.2.1-20

Certification: JBES 2018 [Generate Certificate]


Silver nanoparticles (Ag NPs) have gained huge attention and popularity in the scientific world due to their intriguing physical, chemical and antimicrobial properties. Ag NPs can be synthesized by physical, chemical and biological processes. Since there is pressing need for eco-friendly, and sustainable synthetic method, extensive research is taking place about the green synthesis of Ag NPs using plants. Biosynthesized Ag NPs show excellent biocompatibility and antibacterial property and hence have wide applications in agriculture and other fields.  In view of this, we have reviewed here the use of plants or their extracts for the synthesis of Ag NPs, their characterization, and effect of physicochemical parameters on the synthesis. This review underlines the applications of biosynthesized Ag NPs in the agriculture sector with a short note on its future prospects.


Copyright © 2021
By Authors and International Network for
Natural Sciences (INNSPUB)
This article is published under the terms of the Creative
Commons Attribution Liscense 4.0

Green synthesis of silver nanoparticles (AgNPs): Agricultural applications and future vision

Abdel-Halim ES, El-Rafie MH, Al-Deyab SS. 2011. Polyacrylamide/guar gum graft copolymer for preparation of silver nanoparticles. Carbohydrate Polymers  85(3), 692-697. http://doi.org/10.1016/j.carbpol.2011.03.039

Ahmad N, Sharma S. 2012. Green synthesis of silver nanoparticles using extracts of Ananas comosus. Green and Sustainable Chemistry 2(4), 141. http://dx.doi.org/10.4236/gsc.2012.24020

Al-Aksar AA, Hafez EE, Kabeil SA, Meghdad. 2013. Bioproduction of silver-nanoparticles by Fusarium oxysporium and their antimicrobial activity against some plant pathogen bacteria and fungi. Life Science Journal 10, 2470-2475.

Aljabali AA, Akkam Y, Al Zoubi MS, Al-Batayneh KM, Al-Trad B, Abo Alrob O, Alkilany AM, Benamara M, Evans DJ. 2018. Synthesis of gold nanoparticles using leaf extract of Ziziphus zizyphus and their antimicrobial activity. Nanomaterials 8(3), 174. http://doi.org/10.3390/nano8030174

Almutairi ZM, Alharbi A. 2015. Effect of silver nanoparticles on seed germination of crop plants. Journal of Advances in Agriculture 4, 283-288. http://doi.org/10.24297/jaa.v4i1.4295

Amin M, Anwar F, Janjua MRSA, Iqbal MA, Rashid U. 2012. Green synthesis of silver nanoparticles through reduction with Solanum xanthocarpum L. berry extract: characterization, antimicrobial and urease inhibitory activities against Helicobacter pylori. International Journal of Molecular Sciences 13(8), 9923-9941. http://dx.doi.org/10.3390/ijms13089923

An J, Zhang M, Wang S, Tang J. 2008. Physical, chemical and microbiological changes in stored green asparagus spears as affected by coating of silver nanoparticles-PVP. LWT-Food Science and Technology 41(6), 1100-1107. http://doi.org/10.1016/j.lwt.2007.06.019

Ankamwar B, Damle C, Ahmad A, Sastry M. 2005. Biosynthesis of gold and silver nanoparticles using Emblica officinalis fruit extract, their phase transfer and transmetallation in an organic solution. Journal of Nanoscience and Nanotechnology 5(10), 1665-1671. http://doi.org/10.1166/jnn.2005.184

Ankanna STNVKVP, TNVKV P, Elumalai EK, Savithramma N. 2010. Production of biogenic silver nanoparticles using Boswellia ovalifoliolata stem bark. Digest Journal of Nanomaterials  and Biostructures 5(2), 369-372.

Azkiya NI, Masruri M, Ulfa SM. 2018. Green Synthesis of Silver Nanoparticles using Extract of Pinus merkusii Jungh and De Vriese Cone Flower. IOP Conference Series: Materials Science and Engineering 299 (1), 012070. http://doi.org/10.1088/1757-899X/299/1/012070

Bagherzade G, Tavakoli MM, Namaei MH. 2017. Green synthesis of silver nanoparticles using aqueous extract of saffron (Crocus sativus L.) wastages and its antibacterial activity against six bacteria. Asian Pacific Journal of Tropical Biomedicine 7(3), 227-233. http://doi.org/10.1016/j.apjtb.2016.12.014

Baharara J, Namvar F, Ramezani T, Hosseini, Mohamad R. 2014. Green synthesis of silver nanoparticles using Achillea biebersteinii flower extract and its anti-angiogenic properties in the rat aortic ring model. Molecules 19(4), 4624-4634. http://doi.org/10.3390/molecules19044624

Balaguru RJB, Jeyaprakash BG. 2010. Melting points, mechanical properties of nanoparticles and Hall Petch relationship for nanostructured materials. NPTEL-Electrical and Electronics Engineering-Semiconductor Nanodevices 10, 1-10.

Bankar A, Joshi B, Kumar AR, Zinjarde S. 2010. Banana peel extract mediated novel route for the synthesis of silver nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects 368(1-3), 58-63. http://doi.org/10.1016/j.colsurfa.2010.07.024

Bar H, Bhui DK, Sahoo GP, Sarkar P, De SP, Misra A. 2009. Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloids and Surfaces A: Physicochemical and Engineering Aspects 339(1-3), 134-139. http://dx.doi.org/10.1016/j.colsurfa.2009.02.008

Benakashani F, Allafchian A, Jalali SAH. 2017.  Green synthesis, characterization and antibacterial  activity of silver nanoparticles from root extract of Lepidium draba weed. Green Chemistry Letters and Reviews 10(4), 324-330. http://doi.org/10.1080/17518253.2017.1363297

Bhuyan T, Mishra K, Khanuja M, Prasad R, Varma A. 2015. Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Materials Science in Semiconductor Processing. 32, 55-61. http://doi.org/10.1016/j.mssp.2014.12.053

Boysen E, Muir NC. 2011. Nanotechnology for dummies. John Wiley and Sons.

Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M. 2006. Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnology Progress. 22(2), 577-583. http://doi.org/10.1021/bp0501423

Chaudhry Q, Castle L. 2011. Food applications of nanotechnologies: An overview of opportunities and challenges for developing countries. Trends in Food Science and Technology. 22(11), 595-603. http://doi.org/10.1016/j.tifs.2011.01.001

Das SK, Khan MMR, Guha AK, Das AR, Mandal AB. 2012. Silver-nano biohybride material: synthesis, characterization and application in water purification. Bioresource Technology. 124, 495-499. http://doi.org/10.1016/j.biortech.2012.08.071

Dehnavi AS, Raisi A, Aroujalian A. 2013. Control size and stability of colloidal silver nanoparticles with antibacterial activity prepared by a green synthesis method. Synthesis and Reactivity in Inorganic, Metal-Organic, and NanoMetal Chemistry 43(5), 543-551. http://doi.org/10.1080/15533174.2012.741182

Ditta A. 2012. How helpful is nanotechnology in agriculture? Advances in Natural Sciences: Nanoscience and Nanotechnology 3(3), 033002. http://doi.org/10.1088/2043-6262/3/3/033002

Dong C, Cao C, Zhang X, Zhan Y, Wang X, Yang X, Zhou K, Xiao X, Yuan B. 2017. Wolfberry fruit (Lycium barbarum) extract mediated novel route for the green synthesis of silver nanoparticles. Optik-International Journal for Light and Electron Optics 130, 162-170. http://dx.doi.org/10.1016/j.ijleo.2016.11.010

Edison TJI, Sethuraman MG. 2012. Instant green synthesis of silver nanoparticles using Terminalia chebula fruit extract and evaluation of their catalytic activity on reduction of methylene blue. Process Biochemistry 47(9), 1351-1357. http://doi.org/10.1016/j.procbio.2012.04.025

Elamawi RM, Al-Harbi RE, Hendi AA. 2018. Biosynthesis and characterization of silver nanoparticles using Trichoderma longibrachiatum and their effect on phytopathogenic fungi. Egyptian Journal of Biological Pest Control 28(1), 28. http://doi.org/10.1186/s41938-018-0028-1

Emamifar A, Kadivar M, Shahedi M, Soleimanian-Zad S. 2010. Evaluation of nanocomposite packaging containing Ag and ZnO on shelf life of fresh orange juice. Innovative Food Science and Emerging Technologies 11(4), 742-748. http://doi.org/10.1016/j.ifset.2010.06.003

Gaidhani S, Singh R, Singh D, Patel U, Shevade K, Yeshvekar R,Chopade BA. 2013. Biofilm disruption activity of silver nanoparticles synthesized by Acinetobacter calcoaceticus PUCM 1005. Materials Letters 108, 324–327. http://doi.org/10.1016/j.matlet.2013.07.023

Gardea-Torresdey JL, Parsons JG, Gomez E, Peralta-Videa J, Troiani HE, Santiago P, Yacaman MJ. 2002. Formation and growth of Au nanoparticles inside live alfalfa plants. Nano Letters 2(4), 397-401. http://dx.doi.org/10.1021/nl015673

Geisler LJ, Wang Q, Yao Y, Zhang W, Geisler M, Li K, Huang Y, Chen Y, Kolmakov A, Ma X. 2012. Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana. Nanotoxicology 7(3), 323-337.

Ghaffari MM, Hadi-Dabanlou R. 2014. Plant mediated green synthesis and antibacterial activity of silver nanoparticles using Crataegus douglasii fruit extract. Journal of Industrial and Engineering Chemistry 20(2), 739-744. http://doi.org/10.1016/j.jiec.2013.09.005

Ghosh S, Patil S, Ahire M, Kitture R, Kale S, Pardesi K, Cameotra SS, Bellare JS, Dhavale DD, Jabgunde A, Chopade BA. 2012. Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents. International Journal of Nanomedicine 7, 483. http://doi.org/10.2147/IJN.S24793

Goswami A, Roy I, Sengupta S, Debnath N. 2010. Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens. Thin solid films. 519(3), 1252-1257. http://doi.org/10.1016/j.tsf.2010.08.079

Govindaraju K, Tamilselvan S, Kiruthiga V, Singaravelu G. 2010. Biogenic silver nanoparticles by Solanum torvum and their promising antimicrobial activity. Journal of Biopesticides. 3(1), 394-399.

Graf C, Vossen DL, Imhof A, van Blaaderen A. 2003. A general method to coat colloidal particles with silica. Langmuir 19(17), 6693-6700. http://dx.doi.org/10.1021/la0347859

Gu Z, Biswas A, Zhao M, Tang Y. 2011. Tailoring nanocarriers for intracellular protein delivery. Chemical Society Reviews 40(7), 3638-3655. http://doi.org/10.1039/c0cs00227e

Guidelli EJ, Ramos AP, Zaniquelli MED, Baffa O. 2011. Green synthesis of colloidal silver nanoparticles using natural rubber latex extracted from Hevea brasiliensis. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 82(1), 140-145. http://doi.org/10.1016/j.saa.2011.07.024

He Y, Du Z, Lv H, Jia Q, Tang Z, Zheng X, Zhang K, Zhao F. 2013. Green synthesis of silver nanoparticles by Chrysanthemum morifolium Ramat. extract and their application in clinical ultrasound gel. International Journal of Nanomedicine 8(1), 1809. http://doi.org/10.2147/IJN.S43289

Iravani S, Zolfaghari B. 2013. Green synthesis of silver nanoparticles using Pinus eldarica bark extract. BioMed Research International 2013. http://dx.doi.org/10.1155/2013/639725

Isaac RS, Sakthivel G, Murthy CH. 2013. Green synthesis of gold and silver nanoparticles using Averrhoa bilimbi fruit extract. Journal of Nanotechnology 2013. http://dx.doi.org/10.1155/2013/906592

Iyer RI, Panda T. 2018. Biosynthesis of gold and silver nanoparticles using extracts of callus cultures of pumpkin (Cucurbita maxima). Journal of Nanoscience and Nanotechnology 18(8), 5341-5353. http://doi.org/10.1166/jnn.2018.15378

Jain D, Daima HK, Kachhwaha S, Kothari SL. 2009. Synthesis of plant-mediated silver nanoparticles using papaya fruit extract and evaluation of their antimicrobial activities. Digest Journal of Nanomaterials and Biostructures 4(3), 557-563.

Jain S, Mehata MS. 2017. Medicinal plant leaf extract and pure flavonoid mediated green synthesis of silver nanoparticles and their enhanced antibacterial property. Scientific Reports 7(1), 15867. http://doi.org/10.1038/s41598-017-15724-8

Jha AK, Prasad K. 2010. Biosynthesis of metal and oxide nanoparticles using Lactobacilli from yoghurt and probiotic spore tablets. Biotechnology Journal 5(3), 285-291. http://doi.org/10.1002/biot.200900221

Kahrilas GA, Wally LM, Fredrick SJ, Hiskey M, Prieto AL, Owens JE. 2013. Microwave-assisted green synthesis of silver nanoparticles using orange peel extract. ACS Sustainable Chemistry and Engineering 2(3), 367-376. http://doi.org10.1021/sc4003664

Kalimuthu K, Babu RS, Venkataraman D, Bilal M, Gurunathan S. 2008. Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids and Surfaces B: Bio interfaces 65(1), 150-153. http://doi.org/10.1016/j.colsurfb.2008.02.018

Kaveh R, Li YS, Ranjbar S, Tehrani R, Brueck CL, Van Aken B. 2013. Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions. Environmental Science and Technology 47(18), 10637-10644. http://doi.org/10.1021/es402209w

Khalil MM, Ismail EH, El-Baghdady KZ, Mohamed D. 2014. Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity. Arabian Journal of Chemistry 7(6), 1131-1139. http://doi.org/10.1016/j.arabjc.2013.04.007

Kim HS, Kang HS, Chu GJ, Byun HS. 2008. Antifungal effectiveness of nanosilver colloid against rose powdery mildew in greenhouses. Solid State Phenomena 135, 15-18. www.doi.org/10.4028/www.scientific.net/SSP.135.15

Kim SW, Jung, JH, Lamsal K, Kim YS, Min JS, Lee YS. 2012. Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology 40(1), 53-58. http://doi.org/10.5941/MYCO.2012.40.1.053

Kimber RL, Lewis, EA, Parmeggiani F, Smith K, Bagshaw H, Starborg T, Joshi N, Figueroa AI, van der Laan G, Cibin G, Gianolio D. 2018. Biosynthesis and characterization of copper nanoparticles using Shewanella oneidensis: Application for click chemistry. Small 14(10), 1703145. http://doi.org/10.1002/smll.201703145

Kora AJ, Arunachalam J. 2012. Green fabrication of silver nanoparticles by gum Tragacanth (Astragalus gummifer): a dual functional reductant and stabilizer. Journal of Nanomaterial’s 2012, 69-76. http://doi.org/10.1155/2012/869765

Kora AJ, Beedu SR, Jayaraman A. 2012. Size-controlled green synthesis of silver nanoparticles mediated by gum ghatti (Anogeissus latifolia) and its biological activity. Organic and Medicinal Chemistry Letters 2(1), 17. http://doi.org/10.1186/2191-2858-2-17

Kora AJ, Sashidhar RB, Arunachalam J. 2010. Gum kondagogu (Cochlospermum gossypium): a template for the green synthesis and stabilization of silver nanoparticles with antibacterial application. Carbohydrate Polymers 82(3), 670-679. http://doi.org/10.1016/j.carbpol.2010.05.034

Krutyakov YA, Kudrinskiy AA, Olenin AY, Lisichkin GV. 2008. Synthesis and properties of silver nanoparticles: advances and prospects. Russian Chemical Reviews 77(3), 233-257. www.doi.org/10.1070/RC2008v077n03ABEH003751

Kulkarni SK. 2015. Nanotechnology: Principles and Practices. 403. Berlin, Germany. Springer.

Kumar B, Kumari S, Cumbal L, Debut A. 2015. Lantana camara berry for the synthesis of silver nanoparticles. Asian Pacific Journal of Tropical Biomedicine 5(3), 192-195. http://doi.org/10.1016/S2221-1691(15)30005-8

Kumar DA, Palanichamy V, Roopan SM. 2014. Green synthesis of silver nanoparticles using Alternanthera dentata leaf extract at room temperature and their antimicrobial activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 127, 168-171. http://doi.org/10.1016/j.saa.2014.02.058

Ledwith DM, Whelan AM, Kelly JM. 2007. A rapid, straight-forward method for controlling the morphology of stable silver nanoparticles. Journal of Materials Chemistry 17(23), 2459-2464. http://doi.org/10.1039/b702141k

Lin C, Fugetsu B, Su Y, Watari F. 2009. Studies on toxicity of multi-walled carbon nanotubes on Arabidopsis T87 suspension cells. Journal of Hazardous Materials 170, 578-583. http://doi.org/10.1016/j.jhazmat.2009.05.025

Lu B, Wu X, Shi J, Dong Y, Zhang Y. 2006. Toxicology and safety of antioxidant of bamboo leaves. Part 2: Developmental toxicity test in rats with antioxidant of bamboo leaves. Food and Chemical Toxicology 44(10), 1739-1743. http://doi.org/10.1016/j.fct.2006.05.012

Lu B, Wu X, Tie X, Zhang Y, Zhang Y. 2005. Toxicology and safety of anti-oxidant of bamboo leaves. Part 1: Acute and subchronic toxicity studies on anti-oxidant of bamboo leaves. Food and Chemical Toxicology 43(5), 783-792. http://doi.org/10.1016/j.fct.2005.01.019

Makarov VV, Love AJ, Sinitsyna OV, Makarova SS, Yaminsky IV, Taliansky ME, Kalinina NO. 2014. “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae. 6(1), 35-44.

Maria BS, Devadiga A, Kodialbail VS, Saidutta MB. 2015. Synthesis of silver nanoparticles using medicinal Zizyphus xylopyrus bark extract. Applied Nanoscience 5(6), 755-762. http://doi.org/10.1007/s13204-014-0372-8

Mehta CM, Srivastava R, Arora S, Sharma AK. 2016. Impact assessment of silver nanoparticles on plant growth and soil bacterial diversity. 3 Biotech 6(2), 254. http://doi.org/10.1007/s13205-016-0567-7

Mittal AK, Kaler A, Banerjee UC. 2012. Free radical scavenging and antioxidant activity of silver nanoparticles synthesized from flower extract of Rhododendron dauricum. Nano Biomedicine and Engineering 4(3), 118-124. http://doi.org/10.5101/nbe.v4i3.p118-124

Mittal AK, Tripathy D, Choudhary A, Aili PK, Chatterjee A, Singh IP, Banerjee UC. 2015. Bio-synthesis of silver nanoparticles using Potentilla fulgens Wall. Ex Hook. and its therapeutic evaluation as anticancer and antimicrobial agent. Materials Science and Engineering C 53, 120-127. http://doi.org/10.1016/j.msec.2015.04.038

Mohammed Fayaz A, Balaji K, Girilal M, Kalaichelvan PT, Venkatesan R. 2009. Mycobased synthesis of silver nanoparticles and their incorporation into sodium alginate films for vegetable and fruit preservation. Journal of Agricultural and Food Chemistry 57(14), 6246-6252. http://doi.org/10.1021/jf900337h

Mohapatra B, Kuriakose S, Mohapatra S. 2015. Rapid green synthesis of silver nanoparticles and nanorods using Piper nigrum extract. Journal of Alloys and Compounds 637, 119-126. http://doi.org/10.1016/j.jallcom.2015.02.206

Moodley JS, Krishna SBN, Pillay K, Govender 2018. Green synthesis of silver nanoparticles from Moringa oleifera leaf extracts and its antimicrobial potential. Advances in Natural Sciences: Nanoscience and Nanotechnology 9(1), 015011. http://doi.org/10.1088/2043-6254/aaabb2

Morales-Sánchez JE, Noriega ME, Cristina Q, Compeán-Jasso ME, González Hernández J, Facundo R. 2011. Synthesis of silver nanoparticles using albumin as a reducing agent. Materials Sciences and Applications 2(6), 578. http://dx.doi.org/10.4236/msa.2011.26077

Mukhopadhyay SS. 2014. Nanotechnology in agriculture: prospects and constraints. Nanotechnology, Science and Applications 7, 63-71.  http://doi.org/10.2147/NSA.S39409

Nadaf NY, Kanase SS. 2015. Antibacterial activity of Silver Nanoparticles singly and in combination with third generation antibiotics against bacteria causing hospital acquired infections biosynthesized by isolated Bacillus marisflavi YCIS MN 5. Digest Journal of Nanomaterials and Biostructures 10(4), 1189-1199.

Nadaf NY, Kanase SS. 2016. Biosynthesis of gold nanoparticles by Bacillus marisflavi and its potential in catalytic dye degradation. Arabian Journal of Chemistry. http://doi.org/10.1016/j.arabjc.2016.09.020

Naik RR, Stringer SJ, Agarwal G, Jones SE, Stone MO. 2002. Biomimetic synthesis and patterning of silver nanoparticles. Nature Materials 1(3), 169-172. http://doi.org/10.1038/nmat758

Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida, Y, Kumar DS. 2010. Nanoparticulate material delivery to plants. Plant Science 179(3), 154-163. http://doi.org/10.1016/j.plantsci.2010.04.012

Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L. 2008. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17(5), 372-386. http://doi.org/10.1007/s10646-008-0214-0

Nayak D, Ashe S, Rauta PR, Kumari M, Nayak B. 2016. Bark extract mediated green synthesis of silver nanoparticles: evaluation of antimicrobial activity and antiproliferative response against osteosarcoma. Materials Science and Engineering: C 58, 44-52. http://doi.org/10.1016/j.msec.2015.08.022

Nayak D, Pradhan S, Ashe S, Rauta PR, Nayak B. 2015. Biologically synthesized silver nanoparticles from three diverse family of plant extracts and their anticancer activity against epidermoid A431 carcinoma. Journal of Colloid and Interface Science 457, 329-338. http://doi.org/10.1016/j.jcis.2015.07.012

Nazeruddin GM, Prasad NR, Waghmare SR, Garadkar KM, Mulla IS. 2014. Extracellular biosynthesis of silver nanoparticle using Azadirachta indica leaf extract and its anti-microbial activity. Journal of Alloys and Compounds 583, 272-277. http://doi.org/10.1016/j.jallcom.2013.07.111

Ocsoy I, Paret ML, Ocsoy MA, Kunwar S, Chen T, You M, Tan W. 2013. Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ACS Nano 7(10), 8972-8980. http://doi.org/10.1021/nn4034794

Ortega-Arroyo L, Martin-Martinez ES, Aguilar-Mendez MA, Cruz-Orea A, Hernandez Pérez I, Glorieux C. 2013. Green synthesis method of silver nanoparticles using starch as capping agent applied the methodology of surface response. Starch Stärke 65(9-10), 814-821. http://doi.org/10.1002/star.201200255

Ouda SM. 2014. Antifungal activity of silver and copper nanoparticles on two plant pathogens, Alternaria alternata and Botrytis cinerea. Research Journal of Microbiology 9(1), 34-42. http://dx.doi.org/10.3923/jm.2014.34.42

Parikh RY, Singh S, Prasad BLV, Patole MS, Sastry M, Shouche YS. 2008. Extracellular synthesis of crystalline silver nanoparticles and molecular evidence of silver resistance from Morganella sp.: towards understanding biochemical synthesis mechanism. Chem Biochemistry 9(9), 1415-1422. http://doi.org/10.1002/cbic.200700592

Park YK, Tadd EH, Zubris M, Tannenbaum R. 2005. Size-controlled synthesis of alumina nanoparticles from aluminum alkoxides. Materials Research Bulletin 40(9), 1506-1512. http://doi.org/10.1016/j.materresbull.2005.04.031

Patil SV, Borase HP, Patil CD, Salunke BK. 2012. Biosynthesis of silver nanoparticles using latex from few euphorbian plants and their antimicrobial potential. Applied Biochemistry and Biotechnology 167(4), 776-790. http://doi.org/10.1007/s12010-012-9710-z

Polash SA, Saha T, Hossain MS, Sarker SR. 2017. Investigation of the phytochemicals, antioxidant, and antimicrobial activity of the Andrographis paniculata leaf and stem extracts. Advances in Bioscience and Biotechnology 8, 149-162. http://doi.org/10.4236/abb.2017.85012

Quelemes PV, Araruna FB, de Faria BE, Kuckelhaus SA, da Silva DA, Mendonça RZ, Eiras C, dos S Soares MJ, Leite JRS. 2013. Development and antibacterial activity of cashew gum-based silver nanoparticles. International Journal of Molecular Sciences 14(3), 4969-4981. http://doi.org/10.3390/ijms14034969

Rajakumar G, Rahuman AA, Priyamvada B, Khanna VG, Kumar DK, Sujin PJ. 2012. Eclipta prostrata leaf aqueous extract mediated synthesis of titanium dioxide nanoparticles. Materials Letters. 68, 115-117. http://doi.org/10.1016/j.matlet.2011.10.038

Rajan R, Chandran K, Harper SL, Yun SI, Kalaichelvan PT. 2015. Plant extract synthesized silver nanoparticles: an ongoing source of novel biocompatible materials. Industrial Crops and Products 70, 356-373. http://doi.org/10.1016/j.indcrop.2015.03.015

Raut RW, Haroon ASM, Malghe YS, Nikam BT, Kashid SB. 2013. Rapid biosynthesis of platinum and palladium metal nanoparticles using root extract of Asparagus racemosus Linn. Advanced Materials Letters 4(8), 650-654. http://dx.doi.org/10.5185/amlett.2012.11470

Reddy NJ, Vali DN, Rani M, Rani SS. 2014. Evaluation of antioxidant, antibacterial and cytotoxic effects of green synthesized silver nanoparticles by Piper longum fruit. Materials Science and Engineering C 34, 115-122. http://doi.org/10.1016/j.msec.2013.08.039

Remya RR, Rajasree SR, Aranganathan L, Suman TY. 2015. An investigation on cytotoxic effect of bioactive AgNPs synthesized using Cassia fistula flower extract on breast cancer cell MCF-7. Biotechnology Reports 8, 110-115. http://doi.org/10.1016/j.btre.2015.10.004

Rivera VAG, Marega Jr E, Ferri FA. 2012. Localized surface plasmon resonances: noble metal nanoparticle interaction with rare-earth ions. Plasmonics-Principles and Applications. http://dx.doi.org/10.5772/50753

Sadeghi B, Rostami A, Momeni SS. 2015. Facile green synthesis of silver nanoparticles using seed aqueous extract of Pistacia atlantica and its antibacterial activity. Spectrochimica Acta Part A: Molecular Spectroscopy 13, 326-332. http://doi.org/10.1016/j.saa.2014.05.078

Salem WM, Haridy M, Sayed WF, Hassan NH. 2014. Antibacterial activity of silver nanoparticles synthesized from latex and leaf extract of Ficus sycomorus. Industrial Crops and products 62, 228-234. http://doi.org/10.1016/j.indcrop.2014.08.030

Sangeetha G, Rajeshwari S, Venckatesh R. 2011. Green synthesis of zinc oxide nanoparticles by aloe barbadensis miller leaf extract: Structure and optical properties. Materials Research Bulletin. 46(12), 2560-2566. http://doi.org/10.1016/j.materresbull.2011.07.046

Sathishkumar G, Gobinath C, Karpagam, K, Hemamalini V, Premkumar K, Sivaramakrishnan S. 2012. Phyto-synthesis of silver nanoscale particles using Morinda citrifolia L. and its inhibitory activity against human pathogens. Colloids and Surfaces B: Bio interfaces. 95, 235-240. http://doi.org/10.1016/j.colsurfb.2012.03.001

Savithramma N, Rao ML, Rukmini K, Devi PS. 2011. Antimicrobial activity of silver nanoparticles synthesized by using medicinal plants. International Journal of Chem Tech Research 3(3), 1394-1402.

Shaik MR, Khan M, Kuniyil M, Al-Warthan A, Alkhathlan HZ, Siddiqui MRH, Shaik JP, Ahamed A, Mahmood A, Khan M, Adil SF. 2018. Plant-extract-assisted green synthesis of silver nanoparticles using Origanum vulgare L. extract and their microbicidal activities. Sustainability 10(4), 913. http://doi.org/10.3390/su10040913

Shakibaei M, Dhakephalker BA, Kapadnis BP, Chopade BA. 2003. Silver resistance in Acinetobacter baumannii BL54 occurs through binding to a Ag-binding protein 1(1), 41-46.

Shameli K, Bin Ahmad M, Jaffar Al-Mulla EA, Ibrahim NA, Shabanzadeh P, Rustaiyan A, Abdollahi Y, Bagheri S, Abdolmohammadi S, Usman MS, Zidan M. 2012. Green biosynthesis of silver nanoparticles using Callicarpa maingayi stem bark extraction. Molecules 17(7), 8506-8517. http://doi.org/10.3390/molecules17078506

Shankar SS, Ahmad A, Sastry M. 2003. Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnology Progress 19(6), 1627-1631. http://doi.org/10.1021/bp034070w

Shankar SS, Rai A, Ankamwar B, Singh A, Ahmad A, Sastry M. 2004. Biological synthesis of triangular gold nanoprisms. Nature Materials 3(7), 482-488. http://doi.org/10.1038/nmat1152

Sharma P, Bhatt D, Zaidi MGH, Saradhi PP, Khanna PK, Arora S. 2012. Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Applied Biochemistry and Biotechnology 167(8), 2225-2233. http://doi.org/10.1007/s12010-012-9759-8

Singh R, Shedbalkar UU, Wadhwani SA, Chopade BA. 2015. Bacteriagenic silver nanoparticles: synthesis, mechanism, and applications. Applied Microbiology and Biotechnology 99(11), 4579-4593. http://doi.org/10.1007/s00253-015-6622-1

Singh S, Saikia JP, Buragohain AK. 2013. A novel ‘green’ synthesis of colloidal silver nanoparticles (SNP) using Dillenia indica fruit extract. Colloids and Surfaces B: Bio interfaces 102, 83-85. http://doi.org/10.1016/j.colsurfb.2012.08.012

Sintubin L, De Windt W, Dick J, Mast J, van der Ha D, Verstraete W, Boon N. 2009. Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Applied Microbiology and Biotechnology 84(4), 741-749. http://doi.org/10.1007/s00253-009-2032-6

Song JY, Kim BS. 2009. Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess and Biosystems Engineering 32 (1), 79-84. http://doi.org/10.1007/s00449-008-0224-6

Srikar SK, Giri DD, Pal DB, Mishra PK, Upadhyay SN. 2016. Green Synthesis of Silver Nanoparticles: A Review. Green and Sustainable Chemistry 6(1), 34-56. http://dx.doi.org/10.4236/gsc.2016.61004

Suman TY, Rajasree SR, Kanchana A, Elizabeth SB. 2013. Biosynthesis, characterization and cytotoxic effect of plant mediated silver nanoparticles using Morinda citrifolia root extract. Colloids and Surfaces B: Bio interfaces 106, 74-78. http://doi.org/10.1016/j.colsurfb.2013.01.037

Sundrarajan M, Gowri S. 2011. Green synthesis of titanium dioxide nanoparticles by Nyctanthes arbor-tristis leaves extract. Chalcogenide Letters8(8), 447-451.

Swamy MK, Sudipta KM, Jayanta K, Balasubramanya S. 2015. The green synthesis, characterization, and evaluation of the biological activities of silver nanoparticles synthesized from Leptadenia reticulata leaf extract. Applied Nanoscience 5, 73-81. http://doi.org/10.1016/j.colsurfb.2012.04.006

Syed A, Ahmad A. 2012. Extracellular biosynthesis of platinum nanoparticles using the fungus Fusarium oxysporum. Colloids and Surfaces B: Bio interfaces 97, 27-31. http://doi.org/10.1016/j.colsurfb.2012.03.026

Tagad CK, Dugasani SR, Aiyer R, Park S, Kulkarni A, Sabharwal S. 2013. Green synthesis of silver nanoparticles and their application for the development of optical fiber based hydrogen peroxide sensor. Sensors and Actuators BChemical 183, 44-149. http://dx.doi.org/10.1016%2Fj.snb.2013.03.106

Toh HS, Faure RL, Amin LBM, Hay CYF, George S. 2017. A light-assisted in situ embedment of silver nanoparticles to prepare functionalized fabrics. Nanotechnology, Science and Applications 10, 147. http://doi.org/10.2147/NSA.S139484

Tolaymat TM, El Badawy AM, Genaidy A, Scheckel KG, Luxton TP, Suidan M. 2010. An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: a systematic review and critical appraisal of peer-reviewed scientific papers. Science of the Total Environment 408(5), 999-1006.  http://doi.org/10.1016/j.scitotenv.2009.11.003

Umoren SA, Obot IB, Gasem ZM. 2014. Green synthesis and characterization of silver nanoparticles using red apple (Malus domestica) fruit extract at room temperature. Journal of Materials and Environmental Science 5(3), 907-914.

Valipoor MN, Hamed MMT, Mortazavi SA. 2013. Effect of polyethylene packaging modified with silver particles on the microbial, sensory and appearance of dried barberry. Packaging Technology and Science 26(1), 39-49. http://doi.org/10.1002/pts.1966

Velayutham K, Rahuman AA, Rajakumar G, Roopan SM, Elango G, Kamaraj C, Marimuthu S, Santhoshkumar T, Iyappan M, Siva C. 2013. Larvicidal activity of green synthesized silver nanoparticles using bark aqueous extract of Ficus racemosa against Culex quinquefasciatus and Culex gelidus. Asian Pacific Journal of Tropical Medicine 6(2), 95-101. http://doi.org/10.1016/S1995-7645(13)60002-4

Velmurugan P, Anbalagan K, Manosathyadevan M, Lee KJ, Cho M, Lee SM, Park JH, Oh SG, Bang KS, Oh BT. 2014. Green synthesis of silver and gold nanoparticles using Zingiber officinale root extract and antibacterial activity of silver nanoparticles against food pathogens. Bioprocess and Biosystems Engineering 37(10), 1935-1943. http://doi.org/10.1007/s00449-014-1169-6

Velusamy P, Das J, Pachaiappan R, Vaseeharan B, Pandian K. 2015. Greener approach for synthesis of antibacterial silver nanoparticles using aqueous solution of neem gum (Azadirachta indica L.). Industrial Crops and Products 66, 103-109. http://doi.org/10.1016/j.indcrop.2014.12.042

Vijayakumar M, Priya K, Nancy FT, Noorlidah A, Ahmed ABA. 2013. Biosynthesis, characterization and anti-bacterial effect of plant-mediated silver nanoparticles using Artemisia nilagirica. Industrial Crops and Products 41, 235-240. http://doi.org/10.1016/j.indcrop.2012.04.017

Vijayaraghavan K, Nalini SK, Prakash NU, Madhankumar D. 2012. One step green synthesis of silver nano/microparticles using extracts of Trachyspermum ammi and Papaver somniferum. Colloids and Surfaces BBio interfaces 94, 114-117. http://doi.org/10.1016/j.colsurfb.2012.01.026

Wijayanto A, Dumarçay S, Gérardin-Charbonnier C, Sari RK, Syafii W, Gérardin P. 2015. Phenolic and lipophilic extractives in Pinus merkusii Jungh. et de Vries knots and stem wood. Industrial Crops and Products 69, 466-471. http://doi.org/10.1016/j.indcrop.2015.02.061

Yang X, Feng Y, He Z, Stoffella PJ. 2005. Molecular mechanisms of heavy metal hyper accumulation and phytoremediation. Journal of Trace Elements in Medicine and Biology 18(4), 339-353. http://doi.org/10.1016/j.jtemb.2005.02.007

Yasin S, Liu L, Yao J. 2013. Biosynthesis of silver nanoparticles by bamboo leaves extract and their antimicrobial activity. Journal of Fiber Bioengineering and Informatics 6(6), 77-84. http://doi.org/10.3993/jfbi03201307

Zaki S, Elkady MF, Farag S, Abd-El-Haleem D. 2012. Determination of the effective origin source for nanosilver particles produced by Escherichia coli strain S78 and its application as antimicrobial agent. Materials Research Bulletin 47(12), 4286-4290.  http://doi.org/10.1016/j.materresbull.2012.09.016

Zhang H, Ji Z, Xia T, Meng H, Low-Kam C, Liu R, Pokhrel S, Lin S, Wang X, Liao YP, Wang M. 2012. Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation. ACS Nano 6(5), 4349-4368.  http://dx.doi.org/10.1021%2Fnn3010087

Zielińska A, Skwarek E, Zaleska A, Gazda M, Hupka J. 2009. Preparation of silver nanoparticles with controlled particle size. Procedia Chemistry 1(2), 1560-1566. http://doi.org/10.1016/j.proche.2009.11.004


Style Switcher

Select Layout
Chose Color
Chose Pattren
Chose Background